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Abstract. This paper describes the application of a simulated annealing
approach to find an optimal investment strategy by maximizing expected
wealth at the end of a multistage horizon, considering wealth, return, cash
balance, withdrawals and upper bounds. The discretization of the random
return values and its probability was represented in a scenario tree generated
with simulation and randomized clustering. The performance of the linear
optimization model on different scenario trees is illustrated using test
examples. The model is stochastic, and exact optimization algorithms may
have difficulties with large or complex instances, motivating the research of
heuristic techniques. The computational results indicate that the approach is
promising for this sort of problems because easily allow the introduction of
more specific and real conditions, as constraints in the model.

1 Introduction

In financial portfolio management, multistage stochastic programming is used to find
an optimal investment strategy by maximizing expected wealth at the end of the plan-
ning horizon taking in account the possible fluctuation of the assets return in the fu-
ture (Trippy et al. [9]). The uncertainty on return values of instruments is accurately
described by a continuous distribution represented by a discrete approximation. Given
history up to the commencement of the investment period, the determination of the
finitely many outcomes of the random return variables is called scenario tree genera-
tion. The discretization of the random values and the occurrence probability consti-
tute a scenario tree (see Giilpinar et al [3]).

A Linear Programming (LP) model to maximize the expected wealth at the end of
the investment horizon can be easily build. Expected wealth is calculated as the total
net redemption value at time period 7. The model is multistage because it uses the
wealth generated in the previous period in order to represent the constraint in the next
period. It takes into account the uncertainty of the assets return, based in the history
of each asset, representing them in a scenario tree (as in Osorio et al [8]).

In spite of its theoretical interest, the basic portfolio optimization model is often
too simplistic to represent the complexity of real-world portfolio selection problems
in an adequate fashion. In order to enrich the model, we need to introduce more real-
istic constraints that involve withdrawals, diversification constraints and left open the
option to include specific conditions for different applications. This is the context
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where good metaheuristic techniques become important. In particular, Simulated
Annealing has demonstrated to be an efficient and promising technique that can can-

dle the complex models in an adequate way (Crama and Schyns [1D).
The rest of the paper is organized as follows. The Multistage Optimization in Port-

folio Management theory and models is described in section 2. Section 3 includes a
complete description of the Simulated Annealing procedure used. Computational
examples are presented in section 4, and conclusions in section 5.

2 Multistage Optimization in Portfolio Management

In financial portfolio management, multistage stochastic programming is used to find
nvestment strategy by maximizing expected wealth subject to constraints
ertainty on return values of instruments is repre-
sented by a discrete approximation. Given history up to the commencement of the
investment period, the determination of the finitely many outcomes of the random
return variables is called scenario tree generation. Generating scenario trees is impor-
tant for the performance of the multistage stochastic programming. The root node of
the scenario tree represents the decision “today” and the nodes further on represent
conditional decisions at later stages. The arcs linking the nodes represent various
realizations of the uncertain variables. The dynamics of decision making is thus cap-
tured as decisions are adjusted according to realizations of uncertainty.

We use a multistage approach to the portfolio management problem to obtain a re-
turn-efficient multistage portfolio. The main concern of this paper is to find an opti-
mal investment strategy using different asset allocations over a given finite invest-

rizon. Uncertainty on asset performances (or returns) is represented with a
ce of the linear optimization

an optimal i
specified by the investor [8]. The unc

ment ho
scenario tree generated by simulation. The performan

model on different scenario trees is illustrated using test examples.

2.1 Uncertainty Representation and Scenario Trees

Coherent uncertainty representation is a requirement for this type of models. The
uncertainty is usually expressed in terms of multivariate continuous distributions. In
order to represent the continuous distributions, the decision model is generated with
internal sampling or a discrete approximation of the underlying continuous distribu-
tion. The random variables are the uncertain return values of each asset on an invest-
ment. The discretization of the random values and the probability space leads to a
framework in which a random variable takes finitely many values. At each time pe-
riod, new scenarios branch from the old, creating a scenario tree. Scenario trees can
be generated based on different probabilistic approaches as simulation or optimiza-

tion as presented in Gulpinar et al. [3].
Scenario trees can have different structures as shown in Fig. 1. For this research

we took the last option of every parent having two branches.
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Fig. 1 Scenario Trees for Multiperiod Optimization

We assumed a portfolio of n risky assets and consider its optimal restructuring
over a period in terms of expected return. After the initial investment (#=0), the port-
folio may be restructured at discrete times ¢ = 1, ..., T -1, and redeemed at the end of
the period , (r=7).

Let the increasing o-field F,(F,c... c Fr) be generated by stochastic events p =
{pr...p};t=1, ..., T. Let the random variables r(p ) and g,(p *) denote the uncer-
tain dividend (or income) and capital gain returns on investment. Random variables
and some specified coefficients of constraints are assumed to be F', measurable func-

tions (r,, g : Q, »N") on some probability space (€, F,, P ;). Due to the recourse
nature of the multistage problem, decision variables w,, b,, and s, are influenced by
previous stochastic events p°, and hence w,=w/(p '), b,=b(p") and s,= s{(p ). How-
ever, for simplicity, we shall use the terms w,, b,, and s,, and assume their implicit
dependence on p ‘. We assume that p, can take only finitely many values. Thus, the
factors driving the risky events are approximated by a discrete set of scenarios or a
sequence of events. Given the event history up to a time ¢, p°, the uncertainty in the
next period is characterized by finitely many possible outcomes for the next observa-
tion py. This branching process is represented using a scenario tree.

A scenario is defined as a possible realization of the stochastic variables {p, ...,
pr}. Hence, the set of scenarios corresponds to the set of leaves of the scenario tree,
Nr, and nodes of the tree at level £> 1 (the set V) correspond to possible realization
of p’. We denote a node of the tree (or event) by e = (s,f), where s is a scenario (path
from root to leaf), and time period ¢ specifies a particular node on that path. The root
of the tree is 0 = (5,0) (Where s can be any scenario, since the root node is common to
all scenarios). The ancestor (parent) of event e = (s,7) is denoted a(e) = (s, t — I), and
the branching probability p. is the conditional probability of event e, given its parent
event a(e). The path to event e is a partial scenario with probability P, = [Ip. along
that path. Since probabilities p, must sum to unity at each individual branching, prob-
abilities P, will sum up to unity across each layer of tree-nodes A, for ¢ = 0,1, ...,T.

Eachnode e € N;atalevel 1= J, ..., T corresponds to a decision {W,, b, ¢} Which
must be determined at time ¢, and depends in general on p " and the past decisions {w;,
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b;, s;}, forj=1, ..., 1— 1. This process is adapted to p * as w,, b,, s, cannot depend on
future events P, ... or which are not yet realized.

2.2 Scenario Trees Generated by a Simulation and Randomized Clustering

The scenario tree is the input to the financial optimization problem. The basic data
structure is the scenario tree node, which contains a cluster of scenarios (vectors in
Rn), one of which is designated as the centroid. The final tree consists of the cen-

troids of each node and their branching probabilities.
We used the main steps used to generate the scenario tree according to Giilpinar et
al. [3]. These steps are:
Step 1: (Initialization) Create a root node, with N scenarios. Initialize all the sce-
narios (including the centroid) with the desired starting point (“today’s” prices). For a

job queue consisting of the root node.
Step 2: (Simulation) Remove a node from the job queue. Simulate one time pe-

riod of growth (from “today” to “tomorrow”’) in each scenario.

Step 3: (Randomized seeds) Randomly choose a number of distinct scenarios
around which to cluster the rest: one per desired branch in the scenario tree.

Step 4: (Clustering) Group each scenario with the seed point to which it is the
closest. If the resulting clustering is unacceptable, return to step 3.

Step 5: (Centroid selection) For each cluster, find the scenario which is the clos-

est to its center, and designate it as centroid.
Step 6: (Queuing) Create a child scenario tree node for each cluster (with prob-

ability proportional to the number of scenarios in the cluster), and install its scenarios
and centroid. If the child nodes are not leaves, append to the job queue. If the queue
is nonempty, return to step 2. Otherwise, terminate the algorithm.

2.3 Definitions and Notation

Portfolio: A set of assets available for the investor.
Assets: The assets considered are Equities in the Mexican Bursaries Market

(BMV), available for the constitution of a portfolio distribution.
Returns: Percentage of returns in the form of dividends for equities.
Net Redemption Value: Total amount of money received at the end of the hori-

zon, when a the investment is encashed. .
The notation used in the following definitions is described in Table 1. All quanti-

ties in boldface represent vectors in R". The transpose of a vector is denoted with the
symbol ‘. In Table 1, subscript * indicates that vectors have two indices. The first
index represents assets i = 1,2, ..., n. The second one denotes each event e € N, at

time =1, ..., T of the scenario tree.
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Table 1. Notation

69

Symbols and Input Data

1

(1,11, ..., 1)

P°q (191, P292; --+> Pagn)’ (Hadamard product)

P'q =Pigi+ P+ ...+ p,gs (Inner product)

e =(s,0) index denoting an event (a node of the scenario tree)
a(e) ancestor of event e (parent in the scenario tree)

N, set of nodes of the scenario tree at time ¢

Pe branching probability of event e: p. = Prob[e | a(e)]
P probability of event e: if e = (s,7), then Pe=[1; =1 . p(sp)
n number of investment assets

M amount of initial investment

“ investment planning horizon

TW, total withdrawal at time ¢

ic; percentage paid in initial cost for asset i

ac; percentage paid in annual cost for asset i

Yie dividends or income returns for asset i at node e

tc transaction cost

W upper bound for asset i

Decision Variables

NR net redemption value

Ws amount of money held in each asset

h. withdrawal

b. amount bought of each asset

Se

amount sold of each asset

2.4 Multistage LP Problem

The Linear Programming (LP) model maximizes the expected wealth at the end of the
investment horizon. Expected wealth is calculated as the total net redemption value at

time period 7.

The redemption value is basically defined as the amount of money received at time
T when the investment is encashed. The basic LP model only includes constraints to
express the wealth return and cash balance. We added annual bank fees, transaction
costs for purchase operations, the withdrawal variable in the wealth return equation,
the total withdrawal (7W,) equation in the model and the upper bounds on the assets
amount in a diversification constraint in order to obtain a more complete and descrip-
tive model. The constraints in the LP model are:

Net Redemption Value of every asset. 1)
Initial Allocation. (2
Cash Balance Equations. 3)
Wealth for asset i in node e, )

Total Withdrawal at time ¢. 5)
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Diversification constraints (6)

The model is multistage because it uses explicitly the wealth generated in the pre-
vious period in order to obtain the wealth in the next period. It takes into account the
uncertainty of the assets return, based in the history of each asset and represent it in a
scenario tree. The objective function is the sum of the net redemption values of every
asset at the end of the complete horizon, i.e. the net amount of money that the inves-
tor can obtain when the total investment is encashed. The general expression for the

multistage portfolio optimization model is:
max z[-l." NR{ .
Subject to

NR;= E.ENTPE [l' W&] i=l,...,n (1)

T l'Wio=M (2)
1'b;e— 1's;, =0 eeN,t=1,...,T,i=l,...n  (3)

wie = (1 — ac)) [(1+Xie) Wiage)]— hie (1 = tc)bje —Sie eeN,=1,....Ti=1, ..., n 4)

TW,;=Zeen Pe Zizi n 1'h;, =1,....,T ©)
Zicip Wie < Wie Zi=1n (1'Wie) eeN,=1,....,T (6)
NR;20 ! P :

Wies Dies Sie 2 0 eeN,t=1,...,.T,i=1, ...,n

Notice that the annual bank fees deducted by term (1 —ac;) for i = 1, ..., n must be
augmented by the bank’s initial setup fees in the first year. For children of the root
scenario node, e € Ny, the term becomes (1 — ic; — ac;), and is imposed on all con-
straints. The wealth in every period ¢ for asset , is Zeen e (1'w;), for i=1,...,n, and
t=1,...,T. The total wealth in for every period can be evaluated as Zecn Pe Zi=1n 1'Wie »

for =1,...,T.
The number of variables and constraint in the LP model is increased by the number

of assets and the topology of the scenario tree. The size of the scenario tree depends
on the depth and branching at each time period. Our computational results show that
even for large scenario trees it is possible to find solutions near to the optimal in a

reasonable amount of time.

3 Simulated Annealing for Financial Investments

Simulated annealing is a generalization of a Monte Carlo method for examining the
equations of state and frozen states of n-body systems. The concept is based on the
manner in which liquids freeze or metals recrystalize in the process of annealing. In
an annealing process a melt, initially at high temperature and disordered, is slowly
cooled so that the system at any time is approximately in thermodynamic equilibrium.
As cooling proceeds, the system becomes more ordered and approaches a "frozen"
ground state at T=0. The original Metropolis scheme was that an initial state of a
thermodynamic system was chosen at energy E and temperature T, holding T con-
stant the initial configuration is perturbed and the change in energy dE is computed. If
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the change in energy is negative the new configuration is accepted. If the change in
energy is positive it is accepted with a probability given by the Boltzmann factor exp
-(dE/T). This processes is then repeated sufficient times to give good sampling statis-
tics for the current temperature, and then the temperature is decremented and the
entire process repeated until a frozen state is achieved at T=0.

By analogy the generalization of this Monte Carlo approach to combinatorial prob-
lems is straight forward (Kirkpatrick et al. [5]). The current state of the thermody-
namic system is analogous to the current solution to the combinatorial problem, the
energy equation for the thermodynamic system is analogous to at the objective func-
tion, and ground state is analogous to the global minimum. The major difficulty (art)
in implementation of the algorithm is that there is no obvious analogy for the tem-
perature T with respect to a free parameter in the combinatorial problem. Further-
more, avoidance of entrainment in local minima (quenching) is dependent on the
“annealing schedule", the choice of initial temperature, how many iterations are per-
formed at each temperature, and how much the temperature is decremented at each
step as cooling proceeds.

3.1 Algorithm

The general algorithm implemented includes a population instead of only one indi-
vidual solution and a final condition of reaching an expected value (see Holland [4]
and Michalewicz [7]).

Start

Define parameters (initial investment, initial temperature,
long, cooling factor, population size, prodi-
gies _percentage, elitist percentage, move-
ment _amplitud, change_ percentage, replace-

ment_percentage, cloning probability)
Read the Scenario Tree

Generate polulation size initial solutions
temperature = initial temperature
Repeat
For each solution of the population Do
For 0 to long Do
Select the nodes to modify
!Depends on change_percentage
Modify nodes
!Depends on movement_amplitude
Accept or refuse the modification
Sort the solutions according to their means
Select prodigy solutions
'Depends on prodigies percentage
Assign an amplifying factor to each to each prodigy
Select elitists solutions !as many as population_size
Assign an amplifying factor to each elitist
Select the poorest solutions to replace
'Dependes on replacement_ percentage
For each poorest solution Do
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Generate a random z value
If z < cloning probability Then
Replace the solution with a clone

Else
Replace the solution by “Average Idol”

temperature = temperature *cooling_ factor
Until best solution.ob jc_value = expected_mean
Display solution
End

e the exact solution in the examples tested, and finished the al-
mal solution was found, in order to determine the parameters
ed better for this kind of problems. We show these parameters

We knew in advanc
gorithm when the opti
combination that work

in Table 6.

Parameters utilized in the main algorithm presented are described in Table 2.

Table 2. Dictionary

Explanation

Parameters
initial_temperature

long

cooling_factor
population_size
prodigies_percentage
elitist_percentage
movement_amplitud
change_percentage

replacement_percentage

cloning_probability

amplifying_factor

It is determined by the rule that the probability of accepting a
movement is near 1 for each element of the neighborhood at the
beginning of the algorithm.

Number of times that a modified solution is generated at the same
temperature, i.e., the time that the system remains in each tem-

perature to reach a stable state.

Speed to which the temperature is reduced, diminishing the prob-
ability that “bad” solutions are accepted.

Number of solutions that will be conserved in the population, this
number will remain constant in each generation.

Number of solutions, that according to their quality, will be the
parents of the following generation.

Percentage of best solutions found while they are preserved.
Percentage that determines the neighborhood around some value
of the solution within which this value can be moved when doing

modifications.
Percentage of nodes of the solution that will undergo modifica-

tions.

Percentage of solutions that due to its low quality will be replaced
by others of better quality, or by means of clonation or by another
method available called “Average Idol”.

Probability of replacing a solution by another one by means of
clonation.

Assigned in linearly decreasing form, of the prodigies percentage.
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4 Computational Examples

The procedure was tested with two examples. In both cases, 50 monthly periods
(2002-2006) were used to build a scenario tree with four future stages. The scenario
tree has two branches in each node. We considered five assets in the first example
and ten assets in the second one. The data correspond to real assets in the BMV
(Mexican bursaries market) and were obtained from Econom@tica (financial data-
base). The examples were tested in a Pentium IV with 1.7 GHz and 256 Mb.

The initial amount M was of 100 money units for both examples and we consid-
ered a withdrawal of TW=0, for r=1,...,T. The scenario trees used for the example
with 5 assets and the example with 10 assets are showed in Tables 3 and 4.

Table 3. Scenario Tree for 5 Assets

n::ie Assetl Asset2 Asset3 Assetd AssetS Prot:;bili— p::,er S;-
node
0 0.747 0.684 0.769 0.673 0.696 1.000 -1 0
1 0.856 0.703 1.104 0.691 0.741 0.346 0 1
2 0.655 0.667 0.485 0.657 0.658 0.654 0 1
a 0.897 0.710 1.229 0.698 0.757 0.290 1 2
4 0.774 0.689 0.853 0.677 0.707 0.710 1 2
5 0914 0.713 1.284 0.701 0.764 0.595 2 2
6 0.964 0.722 1.438 0.709 0.785 0.405 2 2
7 0.687 0.673 0.584 0.663 0.672 0.237 3 3
8 0.797 0.791 0.692 0.904 0.680 0.763 3 3
9 0.736 0.682 0.736 0.671 0.692 0.559 4 3
10 0504 0.641 0.020 0.632 0.597 0.441 4 3
11 0.797 0.693 0924 0.681 0.717 0.805 5 3
12 0.695 0675 0.610 0.664 0.675 0.195 5 3
13 0716 0.678 0.673 0.668 0.683 0.499 6 3

14 0757 0.685 0.798 0.674 0.700 0.501 6 3
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Table 4. Scenario Tree for 10 Assets
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The amount of money obtained and reinvested (because annual withdrawals are 0
for every period, for both examples) in every asset, can beseenintables Sand 6.

Table 5. Results for example with 5 assets

Stage  Stage  Stage  Stage Stage

Asset 1 2 3 4

Asset 1 0 0 0 18922 328.54
Asset 2 0 176.90 0 14942 248.58
Asset3  100.00 0 21481 26001 48431

Asset 4 0 0 0 7336 135.50
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Table 6. Results for example with 10 assets

Asset Stage 0 Stage 1  Stage 2 Stage 3 Stage 4
America_Movil_A 0 0 450.79 1,498.64  12,428.14
America_Movil_L 100.00 43944 1,755.93 10,594.33  81,967.64

The same models were solved using CPLEX V 9.0, in order to adjust the simulated
annealing procedure parameters for obtaining the optimal solutions. The number of
iterations was the iterations needed to reach the optimal value. Figures 2 and 3 show
the optimal value convergence (the net redemption value encashed at the end of the
horizon) with the simulated annealing procedure presented in this paper.
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Fig. 2 Optimal value convergence for Fig. 3 Optimal value convergence for
example with 5 assets example with 10 assets

Because SA is a metaheuristic, there are many parameters to fix in order to turn it
into an efficient algorithm. We have tested several parameters values to find more
appropriate choices for this type of problems and the best parameters are presented in
Table 7.

Table 7. Best parameter values

Parameters 5 Assets 10 Assets
initial temperature 450 1000
Cooling_factor 0.1 0.1
population_size 5 5
Long 5 5
prodigies_percentage 40% 40%
elitist_percentage 45% 45%
movement_amplitud 30 30
change_percentage 10% 10%
replacement_percentage 40% 20%

clonation_percentage 60% 40%
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5 Conclusions

Portfolio selection gives rise to difficult optimization problems when realistic side
constraints and variables are added to the basic model. Exact optimization algorithms
cannot always deal efficiently with such complex models. It seems reasonable, there-
fore, to investigate the performance of heuristic approaches in this framework (Mar-
inger et al. [6]).

Simulated annealing is a powerful tool for the solution of many optimization prob-
n advantages over other local search methods are its flexibility and its
global optimality. The main objective of this paper was therefore
dequacy of simulated annealing for the solution of more realistic
portfolio optimization models. The resulting algorithm allowed us to get the optimal
net redemption value for the examples tested. The algorithm is able to handle more
classes of constraints than many other approaches found in the literature.

Although there is 2 clear trade-off between the quality of the solutions and the time
required to compute them, the algorithm can be said to be quite versatile since it does
not rely on any restrictive properties of the model (Green et al. [2]). For instance, the
algorithm does not assume any underlying factor model for the generation of the
covariance matrix. Also, the objective function could conceivably be replaced. Never-
theless, the tailoring work required to fine-tune the parameters of the algorithm was
rather delicate. Besides, introducing additional classes of constraints of new features

in the model would certainly prove quite difficult again.

lems. Its mai
ability to approach
to investigate the a
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